УДК [502.4:502.55(203):620.26](571.61/.62)

ХАРАКТЕРИСТИКА СОСТАВА АТМОСФЕРНЫХ ВЗВЕСЕЙ ГОСУДАРСТВЕННОГО ЗАПОВЕДНИКА «БАСТАК»

© 2013 г. ¹К. С. Голохваст, ²И. Л. Ревуцкая, ³Е. С. Лонкина, ⁴И. Э. Памирский, ¹А. Н. Гульков, ¹Н. К. Христофорова

¹Дальневосточный федеральный университет, г. Владивосток

Дыхательные пути — открытая система организма, испытывающая на себе влияние большого количества физико-химических факторов окружающей среды.

На сегодняшний день ввиду нарастающего объема промышленных выбросов и, как следствие, опасности повышения концентрации в окружающей среде нано- и микрочастиц техногенного происхождения важнейшим эколого-гигиеническим вопросом является выяснение количественного и качественного состава атмосферных взвесей современных городов, в которых проживает большинство населения.

Ранее мы исследовали гранулометрический состав (размер частиц и их долевое соотношение) атмосферных взвесей ряда городов Дальнего Востока [4, 5], а также вещественный состав взвесей Владивостока как крупного города-порта [3]. В частности нами было выявлено, что преобладающими типами частиц во взвесях морского города являются природные минералы и горные породы, а на долю техногенных взвесей (частицы сажи, резины, пластмасс, стекла и шлаков) приходится $10-15\,\%$.

Вполне очевидно, что в атмосферных взвесях современных городов, в отличие от заповедников и природоохранных зон, должно содержатся большее количество техногенных частиц. Целью исследования было оценить качественно и приближенно количественно техногенное воздействие на атмосферу удаленных от городов площадей.

Для изучения атмосферных взвесей природоохранной зоны нами был выбран Φ ГБУ «Государственный заповедник "Бастак"» (площадь около 92 га), основанный в 1997 году для охраны экосистем северного Приамурья — кедрово-липовых лесов с богатой флорой и фауной.

В данной работе с использованием световой микроскопии и электронной микроскопии с элементным анализом нами исследованы морфология и вещественный состав частиц из взвесей заповедника «Бастак» как экологически благоприятной зоны без прямого антропогенного воздействия.

Методы

Государственный природный заповедник «Бастак» расположен на окраине переходной зоны от облесённой горной системы Буреинского хребта к почти безлесной Среднеамурской низменности. Лесные земли территории заповедника «Бастак» на 1 января 1998 года составляли 70 %, в том числе покрытые лесом 64 % от общей площади заповедника. Нелесные земли составили 30 % и представлены в основном болотами и лугами, которые занимают южную и восточную части заповедной территории. Климат региона умеренный, имеет муссонный характер. Зима суровая и малоснежная с преобладанием ясной погоды, лето сопровождается обильными осадками [7].

В работе приведены первые результаты микроскопического исследования нано- и микрочастиц атмосферных взвесей, содержавшихся в снеге Федерального государственного учреждения «Государственный природный заповедник "Бастак"», Еврейская автономная область, Дальневосточный федеральный округ, зимой 2011/2012 года. В природоохранной зоне наряду с природными были обнаружены техногенные частицы различного генезиса.

Ключевые слова: взвеси, природные частицы, техногенные частицы, экологический фактор

 $^{^2}$ Приамурский государственный университет имени Шолом-Алейхема, г. Биробиджан

³Государственный заповедник «Бастак», г. Биробиджан

⁴Институт геологии и природопользования ДВО РАН, г. Благовещенск

Южная граница проходит на расстоянии 15 км от Биробиджана. Здесь же проходит автомобильная дорога Москва — Владивосток и Транссибирская железнодорожная магистраль. С западной стороны заповедник граничит с территорией Бирского лесхоза, леса которого активно эксплуатируются. Северный и северо-восточный пределы проходят по границе с Хабаровским краем. С восточной стороны заповедник граничит с Биробиджанским лесхозом [8].

Пробы (атмосферные осадки в виде снега), чтобы исключить вторичное загрязнение антропогенными аэрозолями, отбирались во время снегопадов. Собирался только верхний слой (5—10 см) свежевыпавшего снега. Снег помещали в стерильные контейнеры объемом 3 л. Через пару часов, когда снег в контейнерах полностью истаивал, после взбалтывания из каждого образца набирали 60 мл жидкости и анализировали на лазерном анализаторе частиц Analysette 22 NanoTech (Fritsch). Это позволяло в ходе одного измерения устанавливать распределение частиц по размерам, а также определять их форму.

Пробы снега собирались 26.12.2011, 21.02.2012, 17.03.2012 и 30.03.2012 в пяти различающихся экологическими условиями районах, расположенных на территории заповедника «Бастак» (рис. 1).

Вещественный анализ взвесей проводили на световом микроскопе Nikon SMZ1000 и сканирующем электронном микроскопе Hitachi S-3400N с энергодисперсионным спектрометром Thermo Scientific. Напыление образцов для электронного микроскопа производили платиной.

Результаты

Оценка атмосферного переноса вещества и общей массы взвесей, произведенные разными авторами, расходятся в десятки и сотни раз, что связано с несовершенством применяемых методик [1, 2]. То же можно сказать и про качественный состав взвесей.

Несмотря на это, при световой микроскопии нами были выделены основные типы частиц взвесей, взятых в пяти районах заповедника «Бастак».

В типичном образце, взятом в районе 1 (граница заповедника), были определены: растительный детрит, частички горных пород и минералов и техногенные частицы (металлы, их сплавы, оксиды, хлориды, сульфиды, а также шлаки, спеки и труднодиагностируемые, но явно не природного происхождения частицы).

Кроме минеральной и органической природной составляющей в пробах снега в районах 1 и 2 были

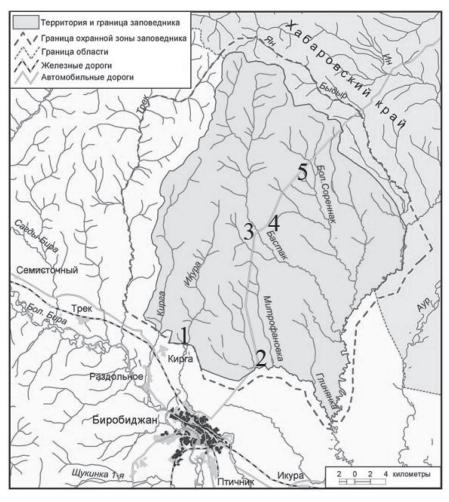


Рис. 1. Карта-схема районов отбора проб снега на территории заповедника «Бастак» [8] (районы отбора проб расшифрованы в тексте)

обнаружены многочисленные техногенные шлаковые частицы силикатного и алюмосиликатного составов, а также частицы соединений Ва и Рb, скорее всего техногенного генеза (рис. 2 и 3, табл. 1 и 2).

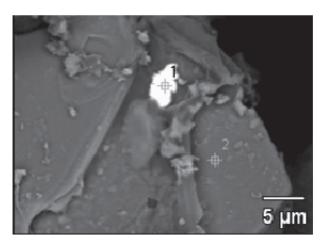


Рис. 2. Взвесь частиц из образца снега, собранного в районе 1, в отраженных электронах

Таблица 1 Состав микрочастиц из района 1 по данным энергодисперсионного анализа

		P			
6	Спе	ктр 1	Спектр 2		
Элемент	Macc. %	Атомн. %	Macc. %	Атомн. %	
О	10,38	21,69	49,33	62,19	
N	3,22	7,68			
Ca					
Al	8,90	11,03	18,05	13,50	
Si	11,83	14,08	22,24	15,97	
С	6,81	18,96	2,34	3,92	
S					
Na	0,33	0,47	0,35	0,31	
Mg	0,29	0,39	0,46	0,38	
Cl	16,52	15,58			
K	4,87	4,16	7,23	3,73	
Pb	36,86	5,95			
Итого	100,00	100,00	100,00	100,00	

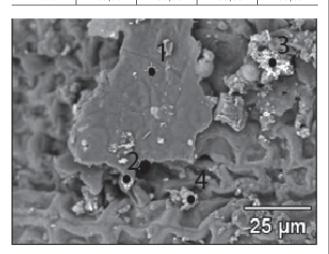
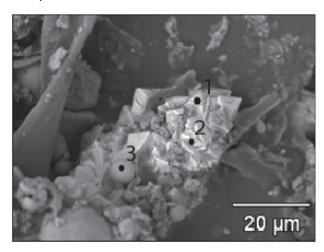
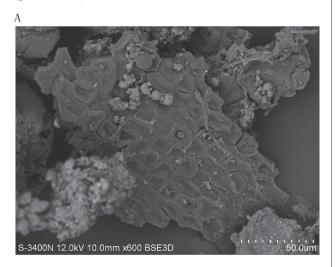



Рис. 3. Минеральная взвесь из образца снега, собранного в районе 2, в отраженных электронах

Таблица 2 Состав микрочастиц из района 2 по данным энергодисперсионного анализа


Эле-	Спектр 1		Спектр 2		Спектр 3		Спектр 4	
	Macc. %	Атомн. %	Macc. %	Атомн. %	Macc. %	Атомн. %	Macc. %	Атомн. %
	42,13	36,53	28,32	61,12	4,53	18,02	38,35	53,66
Ca			1,52	1,31			5,65	3,16
Al					1,38	3,25	5,20	4,31
Si					3,00	6,81	35,09	27,97
С	37,32	43,11	2,99	8,58	1,92	10,16	2,29	4,27
S			13,89	14,96				
N	20,55	20,35						
Cl					23,07	41,44		
K			1,01	0,89			1,27	0,73
Mg							1,99	1,84
Ва			52,28	13,14				
Pb					66,11	20,32		
Fe							10,16	4,07
Итого	100,00	100,00	100,00	100,00	100,00	100,00	100,0	100,0

В районе 2 — граница заповедника (рис. 4, табл. 3) были определены частицы сульфида железа (пирит) и шарики железосиликатного состава.

энергодисперсионного анализа							
Эле-	Спектр 1		Спектр 2		Спектр 3		
	Macc.	Атомн. %	Macc. %	Атомн. %	Macc. %	Атомн. %	
0	6,41	13,18	7,78	15,28	39,40	58,15	
Са					2,30	1,36	
Al					7,99	7,00	
Si					16,68	14,02	
С	5,58	15,28	7,46	19,53	2,79	5,49	
S	45,00	46,19	41,87	41,05			
Mg					1,73	1,68	
Fe	43,02	25,35	42,89	24,14	29,10	12,30	
Итого	100,00	100,00	100,00	100,00	100,00	100,00	

В пробах из центра заповедника (районы 3, 4 и 5) отмечено преобладание растительного детрита (рис. 5A, Б).

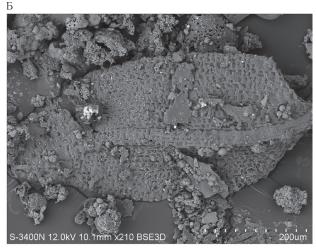


Рис. 5А, Б. Фрагменты органического детрита из района 3

В качестве интересного факта стоить отметить обнаружение в разных районах отбора проб частиц, покрытых микроорганизмами, предположительно относящимися к аэропланктону (рис. 6).



Рис. 6. Частицы, покрытые входящими в аэропланктон микроорганизмами, собранные в районе 3

Обсуждение результатов

При подведении итогов следует отметить следующее.

В атмосферных взвесях, собранных в сезон 2011/2012 года в государственном заповеднике «Бастак», преобладают природные минералы и горные породы, а также остатки растительного детрита.

Среди минералов отмечены кварц, алюмосиликаты, слюды, пирит, гранат, каолинит.

Несмотря на преобладание частиц горных пород, минералов и детрита, в пробах также обнаружены частицы металлов (Fe, Pb, Ba, Cu) и/или их соединений, которые могут иметь как природное, так и техногенное происхождение. Часто встречаются шлаковые частицы силикатного и алюмосиликатного составов явно техногенного происхождения.

Наличие частиц металлов и их соединений в пробах из снега заповедника «Бастак» легко объясняется, во-первых, частым наличием самородных металлов и их соединений в природных системах, во-вторых, близостью города Биробиджана как источника техногенных частиц и, наконец, возможностью миграции в атмосфере микрочастиц на тысячи километров [6].

Также стоит отметить, что в районах отбора проб в центре заповедника (3, 4 и 5) частицы детрита преобладают над минеральной составляющей и отсутствуют частицы металлов. В отличие от атмосферных взвесей промышленных центров взвеси заповедника содержат минимум техногенной составляющей наноразмерного уровня и практически не содержат техногенных макрочастиц (шлаки, сажа, куски резины), в то время как в «городских» взвесях их содержание достигает 60-80% [3-5].

В целом стоит отметить относительно высокое содержание техногенных частиц, что мало ожидалось в природоохранной зоне. В качестве экологически значимых наблюдений также стоит выделить большое количество соединений металлов (Pb, Fe, Ba и т. д.), большое количество шлаковых частиц и спеков, близких по составу природным силикатам и алюмосиликатом, но явно техногенного генезиса (нестехиометричность состава, внешний облик).

Следует отметить, что полученные результаты пока носят качественный характер. Дальнейшее изучение атмосферных взвесей позволит более детально оценить их количественно-качественные характеристики, выявить основные их источники, а также экологическое воздействие на природоохранные территории.

Список литературы

- 1. *Богатиков О. А.* Неорганические наночастицы в природе // Вестник РАН, 2003. Т. 73, № 5. С. 426-428.
- 2. Глазовский Н. Ф. Избранные труды в двух томах. Т. 1. Геохимические потоки в биосфере. М.: Товарищество научных изданий КМК, 2006. 535 с.
- 3. Голохваст К. С., Христофорова Н. К., Кику П. Ф., Гульков А. Н. Гранулометрический и минералогический анализ взвешенных в атмосферном воздухе частиц // Бюллетень физиологии и патологии дыхания. 2011. № 2(40). С. 94—100.
- 4. Голохваст К. С., Чекрыжов И. Ю., Паничев А. М., Кику П. Ф., Христофорова Н. П., Гульков А. Н. Первые

данные по вещественному составу атмосферных взвесей Владивостока // Известия Самарского научного центра РАН. 2011. Т. 13, № 1(8). С. 1853—1857.

- 5. Голохваст К. С., Алейникова Е. А., Никифоров П. А., Гульков А. Н., Христофорова Н. К. Гранулометрический анализ взвешенных микрочастиц в атмосферных осадках г. Хабаровска // Вода: химия и экология. 2012. № 6. С. 117—122.
- 6. Лисицын А. П. Процессы океанской седиментации. М., 1978. 389 с.
- 7. Официальный сайт ГПЗ «Бастак»: http://www.bastak. ru. (дата обращения: 25.02.2013)
- 8. Рубцова Т. А., Калинин А. Ю. Особо охраняемые природные территории Еврейской автономной области: состояние и перспективы развития. Владивосток: Дальнаука, 2011. 138 с.

References

- 1. Bogatikov O. A. *Vestnik RAN* [Newsletter of Russian Academy of Sciences], 2003, vol. 73, no. 5, pp. 426-428. [in Russian]
- 2. Glazovskii N. F. *Izbrannye trudy v dvukh tomakh. T. 1. Geokhimicheskie potoki v biosfere* [Selecta in two volumes. V. 1. Geochemical currents in biosphere]. Moscow, 2006, 535 p. [in Russian]
- 3. Golokhvast K. S., Khristoforova N. K., Kiku P. F., Gul'kov A. N. *Byulleten' fiziologii i patologii dykhaniya* [Bulletin of Respiration Physiology and Pathology]. 2011, no. 2(40), pp. 94-100. [in Russian]
- 4. Golokhvast K. S., Chekryzhov I. Yu., Panichev A. M., Kiku P. F., Khristoforova N. P., Gul'kov A. N. *Izvestiya Samarskogo nauchnogo tsentra RAN* [Bulletin of Samara Research Center RAS]. 2011, vol. 13, no. 1(8), pp. 1853-1857. [in Russian]
- 5. Golokhvast K. S., Aleinikova E. A., Nikiforov P. A., Gul'kov A. N., Khristoforova N. K. *Voda: khimiya i ekologiya* [Water: Chemistry and Ecology]. 2012, no. 6, pp. 117-122. [in Russian]
- 6. Lisitsyn A. P. *Protsessy okeanskoi sedimentatsii* [Processes of ocean sedimentation]. Moscow, 1978, 389 p. [in Russian]

- 7. Ofitsial'nyi sait GPZ «Bastak» [Official site of SNPR "Bastak"]. Available at: URL: http://www.bastak.ru. (accessed 25 October 2013) [in Russian]
- 8. Rubtsova T. A., Kalinin A. Yu. *Osobo okhranyaemye* prirodnye territorii Evreiskoi avtonomnoi oblasti: sostoyanie i perspektivy razvitiya [Specially protected natural sites of the Jewish Autonomous Region: state and developmental perspectives]. Vladivostok, 2011, 138 p. [in Russian]

CHARACTERISTIC OF ATMOSPHERIC SUSPENSIONS COMPOSITION IN STATE RESERVE "BASTAK"

¹K. S. Golokhvast, ²I. L. Revutskaya, ³E. S. Lonkina, ⁴I. E. Pamirskiy, ¹A. N. Gulkov, ¹N. K. Khristoforova

¹Far East Federal University, Vladivostok ²Sholem Aleichem Priamursky State University, Birobidzhan

³Federal State Budgetary Institution «State Nature Reserve Bastak», Birobidzhan

⁴Institute of Geology and Nature Management FEB RAS, Blagoveshchensk, Russia

The paper has presented the first results of a microscopic examination of suspended air nano- and microparticles contained in snow of the Federal State Budgetary Institution «State Nature Reserve "Bastak"», Jewish Autonomous Oblast, Far East Federl Area, in winter 2011-2012. In the natural protection zone, different man-made particles have been found.

Keywords: suspensions, natural particles, man-made particles, environmental factor

Контактная информация:

Голохваст Кирилл Сергеевич — кандидат биологических наук, доцент кафедры нефтегазового дела и нефтехимии Инженерной школы ФГФОУ «Дальневосточный федеральный университет» Министерства образования и науки РФ

Адрес: 690990, г. Владивосток, ул. Пушкинская, д. 37 Тел./факс (423) 222-64-51

E-mail: droopy@mail.ru